Dr Kin
Dessin animé, homme, femme

Croyez-moi, j’ai raison et voici pourquoi!

L’univers de la science et plus précisément des études scientifiques est intimidant pour plusieurs. Il s’agit d’un milieu parfois complexe et parfois très politisé. Nombreux sont ceux et celles pour qui un article scientifique fait foi de tout. En fait, lorsque l’on souhaite véhiculer de l’information en entraînement ou en nutrition sur les réseaux sociaux, deux tendances se démarquent du lot :

1) On appuie ses dires avec un article scientifique (lorsqu’on en trouve un) ou,

2) On ridiculise la communauté scientifique en affirmant qu’ils ne connaissent rien et qu’ils sont tous à la solde des grands lobbys de ce monde.

Certaines figures populaires du milieu de l’entraînement et de la nutrition excellent dans l’utilisation de support scientifique pour appuyer leur approche quand ils trouvent des articles « pertinents » et n’hésitent pas le lendemain à dénigrer la communauté scientifique lorsqu’elle présente un argumentaire contraire à leur ligne de pensée (les chercheurs sont toujours tellement déconnectés de la réalité).

Je fais volontairement usage des sympathiques guillemets pour accompagner mon usage du terme pertinent. Pourquoi ? Parce qu’il arrive parfois que les articles utilisés comme source de référence ne soient justement pas pertinents. Plusieurs choses peuvent mener à ce dérapage scientifique.

Il est possible que l’article ait été d’une nature frauduleuse, qu’il soit basé sur des résultats falsifiés ou encore que les auteurs aient commis quelques erreurs qui invalides les résultats. L’utilisateur de la citation se contente de lire l’abrégé sans pousser sa lecture plus loin afin de voir les avertissements de retrait et l’utilise de bonne foi… Pourtant, lorsqu’un article est retiré de publication il est d’usage de ne plus l’utiliser en référence (oui, oui, je vous assure). Prenons la publication de Fukuhara et coll.[1] portant sur une protéine sécrétée par le tissu adipeux viscéral qui fut retirée de publication en 2007 (une enquête a révélé quelques erreurs méthodologiques qui invalident les analyses des auteurs. Une erreur de bonne foi, mais qui mène néanmoins à une impossibilité de conclure). Toutefois, ce même article fut cité pas moins de 776 fois après son année de retrait…

Il est également possible que celui qui fait usage de la référence comprenne mal l’article, interprète différemment les résultats ou encore tire des conclusions autres (sans avoir toutes les informations…). C’est l’exemple de l’article de Perry et coll.[2] qui est très souvent cité pour démontrer la supériorité de l’entraînement par intervalle pour la perte de poids. Pourtant, les auteurs n’ont pas mesuré la composition corporelle des participants lors de cette étude. Il s’agit d’une excellente étude, bien conçue avec des mesures extrêmement intéressantes… qui s’intéresse aux capacités oxydatives du muscle. Les auteurs ont trouvé que l’entraînement par intervalles augmentait la capacité du muscle à oxyder des lipides lors d’efforts sous-maximaux (60 % VO2max) pendant 60 min (augmentation de 2 g de gras oxydés suite à la période d’intervention de 6 semaines). Les auteurs n’ont jamais comparé l’entraînement par intervalles à d’autres méthodes d’entraînement. Ils n’ont pas non plus mesuré les changements de composition corporelle pour la durée de l’intervention (ils rapportent que le poids est demeuré stable pendant la période de 6 semaines). Pourtant, plusieurs personnes utilisent cet article afin de justifier la supériorité de l’entraînement par intervalles sur d’autres méthodes pour la perte de poids. Les auteurs n’ont jamais démontré cela…

Il est aussi possible que l’article ne révèle pas tout et que le lecteur doive creuser davantage pour mieux comprendre les informations. C’est le cas de l’article de Buckley et coll.[3] qui fait état d’une amélioration de la capacité aérobie suite à un entraînement multimodal de type CrossFit. En résumé, les auteurs ont comparé l’impact d’un entraînement par intervalles (entraînement sur aviron par intervalles à haute intensité) avec un entraînement multimodal (exercices intermittents intenses comprenant des exercices de musculation de force et des exercices intenses à épuisement). Peu d’information est disponible dans l’article quant à la description des exercices intenses du protocole multimodal. Les participants ont complété des circuits (au nombre de 6) composés d’exercices de force (possiblement squat, soulevé de terre, développé vertical) suivis d’un exercice métabolique qui n’est pas clairement défini. Chaque circuit est d’une durée de 60 s et espacés d’un repos de 3 min. Leur article présente une augmentation similaire de la capacité aérobie chez les participants pour une période de 6 semaines (une augmentation de ~2 mL* kg-1*min-1 dans chaque groupe soit un gain de ~4 %). Il n’en fallait pas plus pour que cet article soit utilisé pour « démontrer » que l’entraînement en musculation permettait une plus grande augmentation de la capacité aérobie que l’entraînement cardiovasculaire traditionnel. Heu… a-t-on lu le même article ? Également, quels sont ces exercices « métaboliques » ? J’ai décidé de communiquer avec les auteurs de l’étude afin d’obtenir plus d’information. Ils furent d’une générosité exemplaire et m’ont transmis l’ensemble des informations que j’avais demandé. Les exercices métaboliques étaient des burpees ou un exercice similaire réalisé à pleine intensité. On rapporte qu’il est possible d’atteindre des intensités supérieures à 80 % de la capacité aérobie lors de l’exécution de ce type de mouvement[4]. En fait, il s’agit d’un exercice qui peut s’apparenter à l’aviron (mobilisation des membres inférieurs et supérieurs de façon cycle, déplacement du poids du corps, etc.). Pourtant, certaines figures du monde de l’entraînement ont utilisé cet article pour informer la population que faire de l’entraînement en force sur le squat allait augmenter leur capacité aérobie. Heu… ai-je manqué un mémo ?

En terminant, il y a aussi ceux qui utilisent une quantité astronomique de référence pour clouer le bec à leurs détracteurs. On noie l’information et on se donne une crédibilité immédiate en affichant une quantité astronomique articles (dont certains tombent souvent les catégories précédemment présentées). Premièrement, personne n’ira vérifier chacune des références et deuxièmement, s’il y en a beaucoup, c’est que ça doit être vrai. De toute façon, si un article scientifique le démontre, c’est que c’est assurément vrai. Et si aucun article ne le démontre, c’est que la science est dans le champ, comme à l’habitude…[3, 5-252]

Références (utiles)

  1. Fukuhara, A., et al., Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005. 307(5708): p. 426-30.
  2. Perry, C.G., et al., High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab, 2008. 33(6): p. 1112-23.
  3. Buckley, S., et al., Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl Physiol Nutr Metab, 2015. 40(11): p. 1157-62.
  4. Gist, N.H., E.C. Freese, and K.J. Cureton, Comparison of responses to two high-intensity intermittent exercise protocols. J Strength Cond Res, 2014. 28(11): p. 3033-40.
Références totalement hors contexte mais ça parait bien…
  1. The Set Point Theory. Available from: http://www.healthscience.org/index.php?option=com_content&view=article&id=551:the-set-point-theory&catid=102:jeff-novicks-blog&Itemid=267.
  2. Position of Dietitians of Canada, the American Dietetic Association, and the American College of Sports Medicine: Nutrition and Athletic Performance. Can J Diet Pract Res, 2000. 61(4): p. 176-192.
  3. Information from your family doctor. Sports and women athletes: the female athlete triad. Am Fam Physician, 2004. 69(7): p. 1734.
  4. Female athlete triad. Each of the following statements about treatment for menstrual disturbances and decreased bone mineral density in female athletes is true except. Can Fam Physician, 2005. 51: p. 1338, 1344-5.
  5. Danger to dogs from cocoa bean mulch put into perspective. J Am Vet Med Assoc, 2006. 228(11): p. 1644.
  6. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 2009. 41(3): p. 687-708.
  7. Sports drinks and energy drinks for children and adolescents: are they appropriate? Pediatrics, 2011. 127(6): p. 1182-9.
  8. Cahill, G.F., Jr., Fuel metabolism in starvation. Annu Rev Nutr, 2006. 26: p. 1-22.
  9. Devlin, M.J., Why does starvation make bones fat? Am J Hum Biol, 2011. 23(5): p. 577-85.
  10. Goldstein, J.L., et al., Surviving starvation: essential role of the ghrelin-growth hormone axis. Cold Spring Harb Symp Quant Biol, 2011. 76: p. 121-7.
  11. Haller, C., et al., Dietary supplement adverse events: report of a one-year poison center surveillance project. J Med Toxicol, 2008. 4(2): p. 84-92.
  12. McCue, M.D., Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol, 2010. 156(1): p. 1-18.
  13. Myers, M.G., Jr. and D.P. Olson, Central nervous system control of metabolism. Nature, 2012. 491(7424): p. 357-63.
  14. Aasa, U., et al., Muscle strength assessment from functional performance tests: role of body size. J Strength Cond Res, 2003. 17(4): p. 664-70.
  15. Abboud, G.J., et al., Effects of load-volume on EPOC after acute bouts of resistance training in resistance-trained men. J Strength Cond Res, 2013. 27(7): p. 1936-41.
  16. Abdelali, H., et al., Effect of dairy products on initiation of precursor lesions of colon cancer in rats. Nutr Cancer, 1995. 24(2): p. 121-32.
  17. Abe, T., et al., Muscle, tendon, and somatotropin responses to the restriction of muscle blood flow induced by KAATSU-walk training. Equine Vet J Suppl, 2006(36): p. 345-8.
  18. Abe, T., C.F. Kearns, and Y. Sato, Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol, 2006. 100(5): p. 1460-6.
  19. Abe, T., et al., Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging, 2012. 32(4): p. 247-52.
  20. Abe, T., et al., Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther, 2010. 33(1): p. 34-40.
  21. Abel, M.G., et al., Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Appl Physiol Nutr Metab, 2008. 33(6): p. 1155-64.
  22. Abt, G., S. Zhou, and R. Weatherby, The effect of a high-carbohydrate diet on the skill performance of midfield soccer players after intermittent treadmill exercise. J Sci Med Sport, 1998. 1(4): p. 203-12.
  23. Acevedo, E.O. and A.H. Goldfarb, Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc, 1989. 21(5): p. 563-8.
  24. Acheson, K.J., et al., Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr, 1988. 48(2): p. 240-7.
  25. Ackerman, K.E. and M. Misra, Bone health and the female athlete triad in adolescent athletes. Phys Sportsmed, 2011. 39(1): p. 131-41.
  26. Adachi, R., K. Yabusaki, and T. Obinata, Uptake of albumin is coupled with stretch-induced hypertrophy of skeletal muscle cells in culture. Zoolog Sci, 2003. 20(5): p. 557-65.
  27. Adams Hillard, P.J. and H.R. Deitch, Menstrual disorders in the college age female. Pediatr Clin North Am, 2005. 52(1): p. 179-97, ix-x.
  28. Ahmed, Z., et al., Therapeutic effects of acrobatic exercise and magnetic field exposure on functional recovery after spinal cord injury in mice. Bioelectromagnetics, 2011. 32(1): p. 49-57.
  29. Ahmun, R.P., R.J. Tong, and P.N. Grimshaw, The effects of acute creatine supplementation on multiple sprint cycling and running performance in rugby players. J Strength Cond Res, 2005. 19(1): p. 92-7.
  30. Ahn, J., et al., Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev, 2007. 16(12): p. 2623-30.
  31. Ahtiainen, J.P., et al., Recovery after heavy resistance exercise and skeletal muscle androgen receptor and insulin-like growth factor-I isoform expression in strength trained men. J Strength Cond Res, 2011. 25(3): p. 767-77.
  32. Al Sarakbi, W., M. Salhab, and K. Mokbel, Dairy products and breast cancer risk: a review of the literature. Int J Fertil Womens Med, 2005. 50(6): p. 244-9.
  33. Aldabal, L. and A.S. Bahammam, Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J, 2011. 5: p. 31-43.
  34. Alford, C., H. Cox, and R. Wescott, The effects of red bull energy drink on human performance and mood. Amino Acids, 2001. 21(2): p. 139-50.
  35. Alkahtani, S.A., et al., Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men. Springerplus, 2013. 2: p. 532.
  36. Allison, D.B., et al., Differential associations of body mass index and adiposity with all-cause mortality among men in the first and second National Health and Nutrition Examination Surveys (NHANES I and NHANES II) follow-up studies. Int J Obes Relat Metab Disord, 2002. 26(3): p. 410-6.
  37. Almenning, I., et al., Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study. PLoS One, 2015. 10(9): p. e0138793.
  38. Ameer, F., et al., De novo lipogenesis in health and disease. Metabolism, 2014. 63(7): p. 895-902.
  39. American College of Sports, M., A. American Dietetic, and C. Dietitians of, Joint Position Statement: nutrition and athletic performance. American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada. Med Sci Sports Exerc, 2000. 32(12): p. 2130-45.
  40. American College of Sports, M., et al., American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc, 2007. 39(2): p. 377-90.
  41. American Dietetic, A., et al., American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc, 2009. 41(3): p. 709-31.
  42. Andersen, R.E., et al., Effects of lifestyle activity vs structured aerobic exercise in obese women: a randomized trial. JAMA, 1999. 281(4): p. 335-40.
  43. Anderson, J.M., The female athlete triad: disordered eating, amenorrhea, and osteoporosis. Conn Med, 1999. 63(11): p. 647-52.
  44. Andrews, G.J., M.I. Sudwell, and A.C. Sparkes, Towards a geography of fitness: an ethnographic case study of the gym in British bodybuilding culture. Soc Sci Med, 2005. 60(4): p. 877-91.
  45. Apor, P., J. Tihanyi, and P. Borka, [Improving of muscle mass and force in rehabilitation of heart-lung patients. Aerobic interval training, resistance-exercises, excentric exercises, vibration]. Orv Hetil, 2005. 146(38): p. 1971-5.
  46. Applegate, E.A. and L.E. Grivetti, Search for the competitive edge: a history of dietary fads and supplements. J Nutr, 1997. 127(5 Suppl): p. 869S-873S.
  47. Aquino, B.C. and E.J. Barone, “Effort” thrombosis of the axillary and subclavian vein associated with cervical rib and oral contraceptives in a young woman athlete. J Am Board Fam Pract, 1989. 2(3): p. 208-11.
  48. Arad, A.D., et al., High-intensity interval training without weight loss improves exercise but not basal or insulin-induced metabolism in overweight/obese African American women. J Appl Physiol (1985), 2015. 119(4): p. 352-62.
  49. Arduini, A., M.C. Gomez-Cabrera, and M. Romagnoli, Reliability of different models to assess heart rate recovery after submaximal bicycle exercise. J Sci Med Sport, 2011. 14(4): p. 352-7.
  50. Arida, R.M., et al., Exercise paradigms to study brain injury recovery in rodents. Am J Phys Med Rehabil, 2011. 90(6): p. 452-65.
  51. Armstrong, D.W., 3rd, et al., Stress fracture injury in young military men and women. Bone, 2004. 35(3): p. 806-16.
  52. Armstrong, L.E., Caffeine, body fluid-electrolyte balance, and exercise performance. Int J Sport Nutr Exerc Metab, 2002. 12(2): p. 189-206.
  53. Arnal, M.A., et al., Protein turnover modifications induced by the protein feeding pattern still persist after the end of the diets. Am J Physiol Endocrinol Metab, 2000. 278(5): p. E902-9.
  54. Arnal, M.A., et al., Protein pulse feeding improves protein retention in elderly women. Am J Clin Nutr, 1999. 69(6): p. 1202-8.
  55. Arnal, M.A., et al., Protein feeding pattern does not affect protein retention in young women. J Nutr, 2000. 130(7): p. 1700-4.
  56. Arnal, M.A., et al., Pulse protein feeding pattern restores stimulation of muscle protein synthesis during the feeding period in old rats. J Nutr, 2002. 132(5): p. 1002-8.
  57. Arnaud, M.J., Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb Exp Pharmacol, 2011(200): p. 33-91.
  58. Arnold, J. and D. Richard, Exercise during intermittent cold exposure prevents acclimation to cold rats. J Physiol, 1987. 390: p. 45-54.
  59. Ashmore, C.R., et al., Stretch-induced growth in chicken wing muscles: nerve-muscle interaction in muscular dystrophy. Am J Physiol, 1984. 246(5 Pt 1): p. C378-84.
  60. Astorino, T.A., et al., Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Cond Res, 2012. 26(1): p. 138-45.
  61. Astorino, T.A., et al., Minimal Effect of Acute Caffeine Ingestion on Intense Resistance Training Performance. J Strength Cond Res, 2011.
  62. Astorino, T.A., et al., Effect of acute caffeine ingestion on EPOC after intense resistance training. J Sports Med Phys Fitness, 2011. 51(1): p. 11-7.
  63. Astorino, T.A., et al., Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids, 2011.
  64. Astorino, T.A. and D.W. Roberson, Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res, 2010. 24(1): p. 257-65.
  65. Astorino, T.A., et al., Caffeine-induced changes in cardiovascular function during resistance training. Int J Sport Nutr Exerc Metab, 2007. 17(5): p. 468-77.
  66. Atalar, E., et al., Factors affecting bone mineral density in men. Rheumatol Int, 2009. 29(9): p. 1025-30.
  67. Atherton, P.J. and K. Smith, Muscle protein synthesis in response to nutrition and exercise. J Physiol, 2012. 590(Pt 5): p. 1049-57.
  68. Aune, D., et al., Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol, 2012. 23(1): p. 37-45.
  69. Aziz, P.F., et al., Genotype and Mutation Site Specific QT Adaptation during Exercise, Recovery and Postural Changes in Children with LQTS. Circ Arrhythm Electrophysiol, 2011.
  70. Babault, N., et al., Does electrical stimulation enhance post-exercise performance recovery? Eur J Appl Physiol, 2011. 111(10): p. 2501-7.
  71. Babusa, B. and F. Tury, Muscle dysmorphia in Hungarian non-competitive male bodybuilders. Eat Weight Disord, 2012. 17(1): p. e49-53.
  72. Backhouse, S.H., et al., Caffeine ingestion, affect and perceived exertion during prolonged cycling. Appetite, 2011. 57(1): p. 247-52.
  73. Baghurst, T. and C. Lirgg, Characteristics of muscle dysmorphia in male football, weight training, and competitive natural and non-natural bodybuilding samples. Body Image, 2009. 6(3): p. 221-7.
  74. Bailey, D.M., et al., Blood lipid and lipoprotein concentrations in active, sedentary, healthy and diseased men. J Cardiovasc Risk, 1998. 5(5-6): p. 309-12.
  75. Bailey, D.M., et al., Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur J Appl Physiol, 2011. 111(6): p. 925-36.
  76. Balaguera-Cortes, L., et al., Energy intake and appetite-related hormones following acute aerobic and resistance exercise. Appl Physiol Nutr Metab, 2011. 36(6): p. 958-66.
  77. Ballard, O. and A.L. Morrow, Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am, 2013. 60(1): p. 49-74.
  78. Ballard, S.L., J.J. Wellborn-Kim, and K.A. Clauson, Effects of commercial energy drink consumption on athletic performance and body composition. Phys Sportsmed, 2010. 38(1): p. 107-17.
  79. Ballor, D.L., et al., Exercise training attenuates diet-induced reduction in metabolic rate. J Appl Physiol, 1990. 68(6): p. 2612-7.
  80. Barbieri, E., et al., The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle. Oxid Med Cell Longev, 2015. 2015: p. 917085.
  81. Barnett, A., Using recovery modalities between training sessions in elite athletes: does it help? Sports Med, 2006. 36(9): p. 781-96.
  82. Barnett, C., M. Hinds, and D.G. Jenkins, Effects of oral creatine supplementation on multiple sprint cycle performance. Aust J Sci Med Sport, 1996. 28(1): p. 35-9.
  83. Bass, M., L. Turner, and S. Hunt, Counseling female athletes: application of the stages of change model to avoid disordered eating, amenorrhea, and osteoporosis. Psychol Rep, 2001. 88(3 Pt 2): p. 1153-60.
  84. Bassett, D.R., Jr., et al., Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc, 2000. 32(9 Suppl): p. S471-80.
  85. Bassey, E.J., et al., Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur J Appl Physiol Occup Physiol, 1987. 56(3): p. 323-30.
  86. Bassini-Cameron, A., et al., Effect of caffeine supplementation on haematological and biochemical variables in elite soccer players under physical stress conditions. Br J Sports Med, 2007. 41(8): p. 523-30; discussion 530.
  87. Battley, P.F., Adaptations for endurance exercise in migratory birds. Asia Pac J Clin Nutr, 2003. 12 Suppl: p. S3.
  88. Beals, K.A., R.A. Brey, and J.B. Gonyou, Understanding the female athlete triad: eating disorders, amenorrhea, and osteoporosis. J Sch Health, 1999. 69(8): p. 337-40.
  89. Beals, K.A. and A.K. Hill, The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab, 2006. 16(1): p. 1-23.
  90. Beals, K.A. and M.M. Manore, Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab, 2002. 12(3): p. 281-93.
  91. Beals, K.A. and N.L. Meyer, Female athlete triad update. Clin Sports Med, 2007. 26(1): p. 69-89.
  92. Beard, C.M., et al., Effects of diet and exercise on qualitative and quantitative measures of LDL and its susceptibility to oxidation. Arterioscler Thromb Vasc Biol, 1996. 16(2): p. 201-7.
  93. Beck, K.L., et al., Role of nutrition in performance enhancement and postexercise recovery. Open Access J Sports Med, 2015. 6: p. 259-67.
  94. Beckham, S.G. and C.P. Earnest, Metabolic cost of free weight circuit weight training. J Sports Med Phys Fitness, 2000. 40(2): p. 118-25.
  95. Behm, D.G. and K.G. Anderson, The role of instability with resistance training. J Strength Cond Res, 2006. 20(3): p. 716-22.
  96. Belfry, G.R., et al., The effects of short recovery duration on VO(2) and muscle deoxygenation during intermittent exercise. Eur J Appl Physiol, 2011.
  97. Bellar, D., et al., The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol Sport, 2015. 32(4): p. 315-20.
  98. Bellinger, P.M., beta-Alanine supplementation for athletic performance: an update. J Strength Cond Res, 2014. 28(6): p. 1751-70.
  99. Ben Abraham, R., et al., Malignant hyperthermia. Postgrad Med J, 1998. 74(867): p. 11-7.
  100. Beneke, R. and D. Boning, The limits of human performance. Essays Biochem, 2008. 44: p. 11-25.
  101. Benjamin, H.J., The female adolescent athlete: specific concerns. Pediatr Ann, 2007. 36(11): p. 719-26.
  102. Benko, C.R., et al., Potential link between caffeine consumption and pediatric depression: A case-control study. BMC Pediatr, 2011. 11: p. 73.
  103. Benson, J.E., K.A. Engelbert-Fenton, and P.A. Eisenman, Nutritional aspects of amenorrhea in the female athlete triad. Int J Sport Nutr, 1996. 6(2): p. 134-45.
  104. Benton, M.J., Safety and efficacy of resistance training in patients with chronic heart failure: research-based evidence. Prog Cardiovasc Nurs, 2005. 20(1): p. 17-23.
  105. Bereket, A., et al., Hypothalamic obesity in children. Obes Rev, 2012. 13(9): p. 780-98.
  106. Berger, A.J. and K. Alford, Cardiac arrest in a young man following excess consumption of caffeinated “energy drinks”. Med J Aust, 2009. 190(1): p. 41-3.
  107. Berger, W.R., et al., The QT and corrected QT interval in recovery after exercise in children. Circ Arrhythm Electrophysiol, 2011. 4(4): p. 448-55.
  108. Berning, J.M., et al., Anabolic androgenic steroids: use and perceived use in nonathlete college students. J Am Coll Health, 2008. 56(5): p. 499-503.
  109. Bertelloni, S., S. Ruggeri, and G.I. Baroncelli, Effects of sports training in adolescence on growth, puberty and bone health. Gynecol Endocrinol, 2006. 22(11): p. 605-12.
  110. Betts, J.A., et al., Endocrine responses during overnight recovery from exercise: impact of nutrition and relationships with muscle protein synthesis. Int J Sport Nutr Exerc Metab, 2011. 21(5): p. 398-409.
  111. Betts, J.A. and C. Williams, Short-term recovery from prolonged exercise: exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Med, 2010. 40(11): p. 941-59.
  112. Bhatia, D.N., et al., The “bench-presser’s shoulder”: an overuse insertional tendinopathy of the pectoralis minor muscle. Br J Sports Med, 2007. 41(8): p. e11.
  113. Bichler, A., A. Swenson, and M.A. Harris, A combination of caffeine and taurine has no effect on short term memory but induces changes in heart rate and mean arterial blood pressure. Amino Acids, 2006. 31(4): p. 471-6.
  114. Bidon, R., Increase use of cellphone decreases injury rate in fitness center: Une étude bidon pour voir si vous lisez les références. Le Nature llementbon, 3000.
  115. Bigaard, J., et al., Body fat and fat-free mass and all-cause mortality. Obes Res, 2004. 12(7): p. 1042-9.
  116. Bigaard, J., et al., Waist circumference and body composition in relation to all-cause mortality in middle-aged men and women. Int J Obes (Lond), 2005. 29(7): p. 778-84.
  117. Bigard, A.X., [Risks of energy drinks in youths]. Arch Pediatr, 2010. 17(11): p. 1625-31.
  118. Bilzon, J.L., et al., Influence of glucose ingestion by humans during recovery from exercise on substrate utilisation during subsequent exercise in a warm environment. Eur J Appl Physiol, 2002. 87(4-5): p. 318-26.
  119. Birch, K., Female athlete triad. BMJ, 2005. 330(7485): p. 244-6.
  120. Birk, T.J., Poliomyelitis and the post-polio syndrome: exercise capacities and adaptation–current research, future directions, and widespread applicability. Med Sci Sports Exerc, 1993. 25(4): p. 466-72.
  121. Biro, P.A. and J.A. Stamps, Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol Evol, 2010. 25(11): p. 653-9.
  122. Bishop, P.A., E. Jones, and A.K. Woods, Recovery from training: a brief review: brief review. J Strength Cond Res, 2008. 22(3): p. 1015-24.
  123. Blaauw, B., et al., Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet, 2008. 17(23): p. 3686-96.
  124. Blaauw, B. and C. Reggiani, The role of satellite cells in muscle hypertrophy. J Muscle Res Cell Motil, 2014. 35(1): p. 3-10.
  125. Blancquaert, L., I. Everaert, and W. Derave, Beta-alanine supplementation, muscle carnosine and exercise performance. Curr Opin Clin Nutr Metab Care, 2015. 18(1): p. 63-70.
  126. Bloodworth, A.J., et al., Doping and supplementation: the attitudes of talented young athletes. Scand J Med Sci Sports, 2012. 22(2): p. 293-301.
  127. Blundell, J.E., et al., Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Dis Model Mech, 2012. 5(5): p. 608-13.
  128. Blundell, J.E. and J. Cooling, Routes to obesity: phenotypes, food choices and activity. Br J Nutr, 2000. 83 Suppl 1: p. S33-8.
  129. Blundell, J.E. and N.A. King, Effects of exercise on appetite control: loose coupling between energy expenditure and energy intake. Int J Obes Relat Metab Disord, 1998. 22 Suppl 2: p. S22-9.
  130. Blundell, J.E., et al., Cross talk between physical activity and appetite control: does physical activity stimulate appetite? Proc Nutr Soc, 2003. 62(3): p. 651-61.
  131. Bodine, S.C., mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc, 2006. 38(11): p. 1950-7.
  132. Bohlen, J.G., et al., Heart rate, rate-pressure product, and oxygen uptake during four sexual activities. Arch Intern Med, 1984. 144(9): p. 1745-8.
  133. Boles, C.A. and C. Ferguson, The female athlete. Radiol Clin North Am, 2010. 48(6): p. 1249-66.
  134. Bolster, D.R., et al., Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol, 2003. 553(Pt 1): p. 213-20.
  135. Bolton, M.A., et al., Measuring outcomes in plastic surgery: body image and quality of life in abdominoplasty patients. Plast Reconstr Surg, 2003. 112(2): p. 619-25; discussion 626-7.
  136. Bonci, C.M., et al., National athletic trainers’ association position statement: preventing, detecting, and managing disordered eating in athletes. J Athl Train, 2008. 43(1): p. 80-108.
  137. Bonetti, A., et al., Side effects of anabolic androgenic steroids abuse. Int J Sports Med, 2008. 29(8): p. 679-87.
  138. Bonifazi, M., et al., Influence of training on the response of androgen plasma concentrations to exercise in swimmers. Eur J Appl Physiol Occup Physiol, 1995. 70(2): p. 109-14.
  139. Bonomi, A.G., et al., Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Obesity (Silver Spring), 2010. 18(9): p. 1845-51.
  140. Boonyarom, O. and K. Inui, Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf), 2006. 188(2): p. 77-89.
  141. Boozer, C.N., et al., An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial. Int J Obes Relat Metab Disord, 2001. 25(3): p. 316-24.
  142. Bornstein, D.B., et al., Equating accelerometer estimates of moderate-to-vigorous physical activity: In search of the Rosetta Stone. J Sci Med Sport, 2011.
  143. Borsheim, E. and R. Bahr, Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med, 2003. 33(14): p. 1037-60.
  144. Borst, S.E., et al., Metformin restores responses to insulin but not to growth hormone in Sprague-Dawley rats. Biochem Biophys Res Commun, 2002. 291(3): p. 722-6.
  145. Boudenot, A., et al., Quick benefits of interval training versus continuous training on bone: a dual-energy X-ray absorptiometry comparative study. Int J Exp Pathol, 2016.
  146. Boutcher, S.H., High-intensity intermittent exercise and fat loss. J Obes, 2011. 2011: p. 868305.
  147. Boyd, J.C., et al., Reducing the intensity and volume of interval training diminishes cardiovascular adaptation but not mitochondrial biogenesis in overweight/obese men. PLoS One, 2013. 8(7): p. e68091.
  148. Bradley, P., ‘The equilibrium set-point weight: human chorionic gonadotrophin and obesity’. Int J Obes, 1979. 3(4): p. 380-9.
  149. Braun, W.A., W.E. Hawthorne, and M.M. Markofski, Acute EPOC response in women to circuit training and treadmill exercise of matched oxygen consumption. Eur J Appl Physiol, 2005. 94(5-6): p. 500-4.
  150. Bremer, A.A. and R.H. Lustig, Effects of sugar-sweetened beverages on children. Pediatr Ann, 2012. 41(1): p. 26-30.
  151. Bremer, A.A., M. Mietus-Snyder, and R.H. Lustig, Toward a unifying hypothesis of metabolic syndrome. Pediatrics, 2012. 129(3): p. 557-70.
  152. Brentano, M.A., et al., Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res, 2008. 22(6): p. 1816-25.
  153. Broeder, C.E., et al., The effects of either high-intensity resistance or endurance training on resting metabolic rate. Am J Clin Nutr, 1992. 55(4): p. 802-10.
  154. Brosh, A., et al., Estimation of energy expenditure from heart rate measurements in cattle maintained under different conditions. J Anim Sci, 1998. 76(12): p. 3054-64.
  155. Brown, A.K., et al., Exercise therapy and recovery after SCI: evidence that shows early intervention improves recovery of function. Spinal Cord, 2011. 49(5): p. 623-8.
  156. Brown, B.B. and C.M. Werner, Using accelerometer feedback to identify walking destinations, activity overestimates, and stealth exercise in obese and nonobese individuals. J Phys Act Health, 2008. 5(6): p. 882-93.
  157. Brownson, C. and P. Loughna, Alterations in the mRNA levels of two metabolic enzymes in rat skeletal muscle during stretch-induced hypertrophy and disuse atrophy. Pflugers Arch, 1996. 431(6): p. 990-2.
  158. Brunet, M., 2nd, Female athlete triad. Clin Sports Med, 2005. 24(3): p. 623-36, ix.
  159. Brushoj, C., et al., Prevention of overuse injuries by a concurrent exercise program in subjects exposed to an increase in training load: a randomized controlled trial of 1020 army recruits. Am J Sports Med, 2008. 36(4): p. 663-70.
  160. Buchanan, J.R., et al., Determinants of peak trabecular bone density in women: the role of androgens, estrogen, and exercise. J Bone Miner Res, 1988. 3(6): p. 673-80.
  161. Buchegger, F., et al., [(1)(1)C]acetate PET/CT visualizes skeletal muscle exercise participation, impaired function, and recovery after hip arthroplasty; first results. Mol Imaging Biol, 2011. 13(4): p. 793-9.
  162. Buchheit, M., et al., Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players. Front Physiol, 2011. 2: p. 69.
  163. Buchheit, M. and P.B. Laursen, High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med, 2013. 43(10): p. 927-54.
  164. Buchheit, M. and P.B. Laursen, High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med, 2013. 43(5): p. 313-38.
  165. Buchheit, M., et al., Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clin Physiol Funct Imaging, 2011. 31(5): p. 337-46.
  166. Buitrago, S., et al., Mechanical load and physiological responses of four different resistance training methods in bench press exercise. J Strength Cond Res, 2013. 27(4): p. 1091-100.
  167. Bulat, T., et al., Effect of a group-based exercise program on balance in elderly. Clin Interv Aging, 2007. 2(4): p. 655-60.
  168. Burd, N.A., et al., Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol, 2010. 588(Pt 16): p. 3119-30.
  169. Burd, N.A., et al., Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol, 2009. 106(5): p. 1692-701.
  170. Buresh, R., K. Berg, and J. French, The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res, 2009. 23(1): p. 62-71.
  171. Burge, C.M., M.F. Carey, and W.R. Payne, Rowing performance, fluid balance, and metabolic function following dehydration and rehydration. Med Sci Sports Exerc, 1993. 25(12): p. 1358-64.
  172. Burgomaster, K.A., et al., Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 2008. 586(1): p. 151-60.
  173. Burke, J., et al., A case of severe exercise-induced rhabdomyolysis associated with a weight-loss dietary supplement. Mil Med, 2007. 172(6): p. 656-8.
  174. Burke, L.M., Nutrition for post-exercise recovery. Aust J Sci Med Sport, 1997. 29(1): p. 3-10.
  175. Burke, L.M., Nutritional needs for exercise in the heat. Comp Biochem Physiol A Mol Integr Physiol, 2001. 128(4): p. 735-48.
  176. Burrows, M. and S. Bird, The physiology of the highly trained female endurance runner. Sports Med, 2000. 30(4): p. 281-300.
  177. Burrows, M., et al., The components of the female athlete triad do not identify all physically active females at risk. J Sports Sci, 2007. 25(12): p. 1289-97.
  178. Burt, D.G., et al., Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption. Eur J Sport Sci, 2014. 14(4): p. 337-44.
  179. Burton, T., et al., What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc Biol Sci, 2011. 278(1724): p. 3465-73.
  180. Bussmann, J.B., et al., Quantification of physical activities by means of ambulatory accelerometry: a validation study. Psychophysiology, 1998. 35(5): p. 488-96.
  181. Butcher, S.J., et al., Do physiological measures predict selected CrossFit((R)) benchmark performance? Open Access J Sports Med, 2015. 6: p. 241-7.
  182. Butte, N.F., et al., Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. J Nutr, 2010. 140(8): p. 1516-23.
  183. Cabanac, M., Role of set-point theory in body weight. FASEB J, 1991. 5(7): p. 2105-6.
  184. Cabanac, M. and P. Frankham, Evidence that transient nicotine lowers the body weight set point. Physiol Behav, 2002. 76(4-5): p. 539-42.
  185. Cabanac, M. and J. Morrissette, Acute, but not chronic, exercise lowers the body weight set-point in male rats. Physiol Behav, 1992. 52(6): p. 1173-7.
  186. Cadieux, S., et al., Resistance and aerobic exercises do not affect post-exercise energy compensation in normal weight men and women. Physiol Behav, 2014. 130: p. 113-9.
  187. Cadoux-Hudson, T.A., J.D. Few, and F.J. Imms, The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol Occup Physiol, 1985. 54(3): p. 321-5.
  188. Campbell, W.W., et al., Increased energy requirements and changes in body composition with resistance training in older adults. Am J Clin Nutr, 1994. 60(2): p. 167-75.
  189. Campbell, W.W., et al., Dietary protein adequacy and lower body versus whole body resistive training in older humans. J Physiol, 2002. 542(Pt 2): p. 631-42.
  190. Cannon, M.E., C.T. Cooke, and J.S. McCarthy, Caffeine-induced cardiac arrhythmia: an unrecognised danger of healthfood products. Med J Aust, 2001. 174(10): p. 520-1.
  191. Cao, Z.B., et al., Predicting VO2max with an objectively measured physical activity in Japanese women. Med Sci Sports Exerc, 2010. 42(1): p. 179-86.
  192. Cao, Z.B., et al., Predicting VO(2max) with an objectively measured physical activity in Japanese men. Eur J Appl Physiol, 2010. 109(3): p. 465-72.
  193. Capaccio, J.A., T.M. Galassi, and R.C. Hickson, Unaltered aerobic power and endurance following glucocorticoid-induced muscle atrophy. Med Sci Sports Exerc, 1985. 17(3): p. 380-4.
  194. Cardinale, M. and C. Bosco, The use of vibration as an exercise intervention. Exerc Sport Sci Rev, 2003. 31(1): p. 3-7.
  195. Cardinale, M. and M.H. Pope, The effects of whole body vibration on humans: dangerous or advantageous? Acta Physiol Hung, 2003. 90(3): p. 195-206.
  196. Cardinale, M. and J. Rittweger, Vibration exercise makes your muscles and bones stronger: fact or fiction? J Br Menopause Soc, 2006. 12(1): p. 12-8.
  197. Cardinale, M. and J. Wakeling, Whole body vibration exercise: are vibrations good for you? Br J Sports Med, 2005. 39(9): p. 585-9; discussion 589.
  198. Carlson, J.L., M. Curtis, and B. Halpern-Felsher, Clinician practices for the management of amenorrhea in the adolescent and young adult athlete. J Adolesc Health, 2007. 40(4): p. 362-5.
  199. Carpenter, S.E., et al., The effect of regular exercise on women receiving danazol for treatment of endometriosis. Int J Gynaecol Obstet, 1995. 49(3): p. 299-304.
  200. Carroll, R.J., et al., Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am J Epidemiol, 2012. 175(4): p. 340-7.
  201. Carter-Nolan, P.L., et al., Validation of physical activity instruments: Black Women’s Health Study. Ethn Dis, 2006. 16(4): p. 943-7.
  202. Caruso, J.F., et al., Net energy expenditure of gravity-independent high-speed resistive exercise done by women. Aviat Space Environ Med, 2012. 83(2): p. 111-7.
  203. Caruso, J.F. and D.A. Hernandez, Net caloric cost of a 3-set flywheel ergometer resistance exercise paradigm. J Strength Cond Res, 2002. 16(4): p. 567-72.
  204. Casagrande, G. and F. Viviani, Somatotype of Italian rugby players. J Sports Med Phys Fitness, 1993. 33(1): p. 65-9.
  205. Cash, T.F. and T. Pruzinsky, Body Images. 1990, New York: Gilford press.
  206. Castro, C.M., et al., Physical activity program delivery by professionals versus volunteers: the TEAM randomized trial. Health Psychol, 2011. 30(3): p. 285-94.
  207. Cawood, A.L., M. Elia, and R.J. Stratton, Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev, 2012. 11(2): p. 278-96.
  208. Chambliss, H.O., Exercise duration and intensity in a weight-loss program. Clin J Sport Med, 2005. 15(2): p. 113-5.
  209. Chan, J.M., et al., Dairy products, calcium, phosphorous, vitamin D, and risk of prostate cancer (Sweden). Cancer Causes Control, 1998. 9(6): p. 559-66.
  210. Chan, J.M. and E.L. Giovannucci, Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiol Rev, 2001. 23(1): p. 87-92.
  211. Chan, J.M., et al., Dairy products, calcium, and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr, 2001. 74(4): p. 549-54.
  212. Chan-Dewar, F., et al., Cardiac electromechanical delay is increased during recovery from 40 km cycling but is not mediated by exercise intensity. Scand J Med Sci Sports, 2011.
  213. Chang, H.C., et al., Insulin-like growth factor I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc, 2011. 43(12): p. 2274-80.
  214. Chantal, Y., R. Soubranne, and P.C. Brunel, Exploring the social image of anabolic steroids users through motivation, sportspersonship orientations and aggression. Scand J Med Sci Sports, 2009. 19(2): p. 228-34.
  215. Charkoudian, N. and M.J. Joyner, Physiologic considerations for exercise performance in women. Clin Chest Med, 2004. 25(2): p. 247-55.
  216. Charmas, M., et al., Hormonal and metabolic response in middle-aged women to moderate physical effort during aerobics. J Strength Cond Res, 2009. 23(3): p. 954-61.
  217. Cheema, B.S., et al., The feasibility and effectiveness of high-intensity boxing training versus moderate-intensity brisk walking in adults with abdominal obesity: a pilot study. BMC Sports Sci Med Rehabil, 2015. 7: p. 3.
  218. Chen, J.L., et al., The efficacy of the web-based childhood obesity prevention program in Chinese American adolescents (Web ABC study). J Adolesc Health, 2011. 49(2): p. 148-54.
  219. Chen, J.Y., et al., Cardiac autonomic functions derived from short-term heart rate variability recordings associated with heart rate recovery after treadmill exercise test in young individuals. Heart Vessels, 2011. 26(3): p. 282-8.
  220. Chen, K.Y., et al., Predicting energy expenditure of physical activity using hip- and wrist-worn accelerometers. Diabetes Technol Ther, 2003. 5(6): p. 1023-33.
  221. Cheuvront, S.N., et al., Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. J Appl Physiol, 2004. 97(4): p. 1275-82.
  222. Cheuvront, S.N., S.J. Montain, and M.N. Sawka, Fluid replacement and performance during the marathon. Sports Med, 2007. 37(4-5): p. 353-7.
  223. Chicharro, J.L., et al., Overtraining parameters in special military units. Aviat Space Environ Med, 1998. 69(6): p. 562-8.
  224. Choi, B.C., et al., Daily step goal of 10,000 steps: a literature review. Clin Invest Med, 2007. 30(3): p. E146-51.
  225. Choi, L., et al., Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth. J Appl Physiol, 2010. 108(2): p. 314-27.
  226. Choi, L., et al., Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc, 2011. 43(2): p. 357-64.
  227. Cholewa, J., et al., Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy. J Cell Physiol, 2014. 229(9): p. 1148-56.
  228. Christiansen, B.A., Whole-body vibration and weight loss: truth or consequence? Int J Obes (Lond), 2009. 33(3): p. 384; author reply 382-3.
  229. Chtourou, H. and N. Souissi, The effect of training at a specific time of day: a review. J Strength Cond Res, 2012. 26(7): p. 1984-2005.
  230. Church, T.S., et al., Exercise without weight loss does not reduce C-reactive protein: the INFLAME study. Med Sci Sports Exerc, 2010. 42(4): p. 708-16.
  231. Churchill, T.A. and K.B. Storey, Metabolic effects of dehydration on an aquatic frog, Rana pipiens. J Exp Biol, 1995. 198(Pt 1): p. 147-54.
  232. Ciolac, E.G., L.E. Garcez-Leme, and J.M. Greve, Resistance exercise intensity progression in older men. Int J Sports Med, 2010. 31(6): p. 433-8.
  233. Ciolac, E.G. and J.M. Greve, Muscle strength and exercise intensity adaptation to resistance training in older women with knee osteoarthritis and total knee arthroplasty. Clinics (Sao Paulo), 2011. 66(12): p. 2079-84.
  234. Cocate, P.G., et al., Metabolic responses to high glycemic index and low glycemic index meals: a controlled crossover clinical trial. Nutr J, 2011. 10: p. 1.
  235. Cochran, A.J., et al., Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol, 2014. 99(5): p. 782-91.
  236. Cochrane, D.J., Vibration exercise: the potential benefits. Int J Sports Med, 2011. 32(2): p. 75-99.
  237. Cochrane, D.J., Is vibration exercise a useful addition to a weight management program? Scand J Med Sci Sports, 2011.
  238. Coffey, C.S., et al., A randomized double-blind placebo-controlled clinical trial of a product containing ephedrine, caffeine, and other ingredients from herbal sources for treatment of overweight and obesity in the absence of lifestyle treatment. Int J Obes Relat Metab Disord, 2004. 28(11): p. 1411-9.
  239. Colado, J.C. and X. Garcia-Masso, Technique and safety aspects of resistance exercises: a systematic review of the literature. Phys Sportsmed, 2009. 37(2): p. 104-11.
  240. Colado, J.C., et al., A comparison of elastic tubing and isotonic resistance exercises. Int J Sports Med, 2010. 31(11): p. 810-7.
  241. Colbert, L.H., J.M. Hootman, and C.A. Macera, Physical activity-related injuries in walkers and runners in the aerobics center longitudinal study. Clin J Sport Med, 2000. 10(4): p. 259-63.
  242. Colley, R., S.C. Gorber, and M.S. Tremblay, Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep, 2010. 21(1): p. 63-9.
  243. Collier, M.L., et al., Home treadmill friction injuries: a five-year review. J Burn Care Rehabil, 2004. 25(5): p. 441-4.
  244. Collins, C.E., et al., Systematic review of interventions in the management of overweight and obese children which include a dietary component. Int J Evid Based Healthc, 2007. 5(1): p. 2-53.
  245. Compher, C., et al., Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc, 2006. 106(6): p. 881-903.
  246. Conger, S.A., et al., Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab, 2011. 21(1): p. 71-84.
  247. Conley, K.E., W.F. Kemper, and G.J. Crowther, Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation. J Exp Biol, 2001. 204(Pt 18): p. 3189-94.
  248. Consitt, L.A., J.L. Copeland, and M.S. Tremblay, Endogenous anabolic hormone responses to endurance versus resistance exercise and training in women. Sports Med, 2002. 32(1): p. 1-22.