Promo !

Bioénergétique I: Perdre du poids sainement

$375.00

OBTENEZ UNE CARTE-CADEAU DE 50$ À L’ACHAT DE CETTE FORMATION

Bienvenue dans notre formation en ligne de bioénergétique, une discipline essentielle pour les kinésiologues, nutritionnistes et autres professionnels de la santé désirant approfondir leurs connaissances sur la gestion du poids, l’équilibre énergétique, et la régulation de la dépense énergétique. Cette formation de 20 heures combine des cours théoriques en ligne avec des ateliers pratiques pour permettre aux participants d’acquérir une compréhension approfondie de la bioénergétique et de ses applications concrètes dans différents contextes.

Avantages de la formation :

– Un contenu complet et approfondi sur la bioénergétique, adapté aux professionnels de la santé.
– Une approche pédagogique combinant cours en ligne et ateliers pratiques pour une meilleure assimilation des connaissances.
– Des applications concrètes pour aider les participants à intégrer la bioénergétique dans leur pratique professionnelle.
– Un suivi personnalisé par des experts dans le domaine pour répondre aux questions et soutenir les participants tout au long de la formation.

Rejoignez-nous dans cette aventure enrichissante de compréhension de la bioénergétique et de ses implications dans la gestion du poids et de l’énergie. Inscrivez-vous dès maintenant pour développer vos compétences et offrir à vos clients une approche éclairée et scientifique dans leur quête d’une meilleure santé et condition physique.

  • 20 h de formation continue qui changeront à jamais votre façon d’intervenir en gestion de poids
  • Compléter la formation à votre rythme, selon l’horaire qui vous convient
  • Formation entièrement à distance
  • Vous pouvez poser vos questions et interagir avec le responsable de la formation pendant tout votre parcours

Description

Ce cours plonge dans les plus récentes études scientifiques touchant la perte de poids et son maintien. Les déterminants principaux de la perte de poids et de son maintien sont identifiés et détaillés afin que l’intervenant puisse bien cerner les éléments pertinents, efficaces et durables pour favoriser une saine perte de poids.

Les notions véhiculées dans le cadre de cette formation en ligne vous permettront de mieux comprendre comment et pourquoi nous dépensons des calories et quels sont les facteurs qui influencent avec le plus d’efficacité notre balance énergétique et ultimement notre poids. Vous serez en mesure de mieux comprendre les outils qui permettent d’évaluer la dépense énergétique et comment utiliser des technologies accessibles (téléphone intelligent ou montres intelligentes) pour la mesurer et analyser les patrons d’activités physique sur 24h.

De nombreux mythes seront démystifiés et expliqués afin de permettre de mieux comprendre ce que représente un processus de perte de poids sain et efficace.

Le cours en divisé en une partie théorique en ligne et une partie appliquée sous forme d’ateliers à compléter chez soi permettant de mieux intégrer les connaissances et favoriser une utilisation concrète et efficace des principes de perte de poids.

Plusieurs articles scientifiques sont expliqués et vulgarisés afin de rendre les connaissances accessibles et utilisables.

20h de formation continue

La formation est en ligne, vous pouvez la suivre à votre rythme

Pas de date ou de contrainte de temps

Le formateur est disponible pour répondre à vos questions tout au long de la formation (Maxime St-Onge, PhD)

Extrait de la formation

Références

  1. Jobson SA, Passfield L, Atkinson G, et al. The analysis and utilization of cycling training data. Sports Med. 2009;39(10):833-844.
  2. Manore MM, Larson-Meyer DE, Lindsay AR, et al. Dynamic Energy Balance: An Integrated Framework for Discussing Diet and Physical Activity in Obesity Prevention-Is it More than Eating Less and Exercising More? Nutrients. 2017;9(8).
  3. Thivel D, Aucouturier J, Metz L, et al. Is there spontaneous energy expenditure compensation in response to intensive exercise in obese youth? Pediatr Obes. 2014;9(2):147-154.
  4. Smith RL, Soeters MR, Wust RCI, et al. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev. 2018;39(4):489-517.
  5. Levine JA. Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab. 2004;286(5):E675-685.
  6. Keating SE, Johnson NA, Mielke GI, et al. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obesity Reviews. 2017;18(8):943-964.
  7. Swift DL, McGee JE, Earnest CP, et al. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Prog Cardiovasc Dis. 2018;61(2):206-213.
  8. Westerterp KR. Changes in physical activity over the lifespan: impact on body composition and sarcopenic obesity. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2018;19 Suppl 1:8-13.
  9. Silva AM, Judice PB, Carraca EV, et al. What is the effect of diet and/or exercise interventions on behavioural compensation in non-exercise physical activity and related energy expenditure of free-living adults? A systematic review. Br J Nutr. 2018;119(12):1327-1345.
  10. Levine JA. Non-exercise activity thermogenesis (NEAT). Nutrition reviews. 2004;62(7 Pt 2):S82-97.
  11. Levine JA. Non-exercise activity thermogenesis. Proc Nutr Soc. 2003;62(3):667-679.
  12. Moniz SC, Islam H, Hazell TJ. Mechanistic and methodological perspectives on the impact of intense interval training on post-exercise metabolism. Scand J Med Sci Sports. 2019.
  13. Byrne NM, Hills AP. How much exercise should be promoted to raise total daily energy expenditure and improve health? Obesity reviews : an official journal of the International Association for the Study of Obesity. 2018;19 Suppl 1:14-23.
  14. Fan W, Evans RM. Exercise Mimetics: Impact on Health and Performance. Cell Metab. 2017;25(2):242-247.
  15. Bort-Roig J, Briones-Buixassa L, Felez-Nobrega M, et al. Sedentary behaviour associations with health outcomes in people with severe mental illness: a systematic review. Eur J Public Health. 2020;30(1):150-157.
  16. Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. The Lancet. 2016;388(10051):1302-1310.
  17. Magnon V, Vallet GT, Auxiette C. Sedentary Behavior at Work and Cognitive Functioning: A Systematic Review. Front Public Health. 2018;6:239.
  18. Brown WJ, Bauman AE, Owen N. Stand up, sit down, keep moving: turning circles in physical activity research? Br J Sports Med. 2009;43(2):86-88.
  19. Torbeyns T, Bailey S, Bos I, et al. Active Workstations to Fight Sedentary Behaviour. Sports Medicine. 2014;44(9):1261-1273.
  20. Miles-Chan JL, Dulloo AG. Posture Allocation Revisited: Breaking the Sedentary Threshold of Energy Expenditure for Obesity Management. Front Physiol. 2017;8:420.
  21. O’Donoghue G, Perchoux C, Mensah K, et al. A systematic review of correlates of sedentary behaviour in adults aged 18-65 years: a socio-ecological approach. BMC Public Health. 2016;16:163.
  22. Spanier PA, Marshall SJ, Faulkner GE. Tackling the obesity pandemic: a call for sedentary behaviour research. Can J Public Health. 2006;97(3):255-257.
  23. Petersen C, Bauman A, Grønbæk M, et al. Total sitting time and risk of myocardial infarction, coronary heart disease and all-cause mortality in a prospective cohort of Danish adults. International Journal of Behavioral Nutrition and Physical Activity. 2014;11(1):13.
  24. Van Der Horst K, Paw MJ, Twisk JW, et al. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241-1250.
  25. Rawlings GH, Williams RK, Clarke DJ, et al. Exploring adults’ experiences of sedentary behaviour and participation in non-workplace interventions designed to reduce sedentary behaviour: a thematic synthesis of qualitative studies. BMC Public Health. 2019;19(1):1099.
  26. Lopez-Otin C, Galluzzi L, Freije JMP, et al. Metabolic Control of Longevity. Cell. 2016;166(4):802-821.
  27. Josaphat KJ, Kugathasan TA, R ERR, et al. Use of Active Workstations in Individuals with Overweight or Obesity: A Systematic Review. Obesity (Silver Spring). 2019;27(3):362-379.
  28. Hopkins M, Blundell JE. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci (Lond). 2016;130(18):1615-1628.
  29. Siervo M, Wells JC, Cizza G. The contribution of psychosocial stress to the obesity epidemic: an evolutionary approach. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2009;41(4):261-270.
  30. Luis Griera J, Maria Manzanares J, Barbany M, et al. Physical activity, energy balance and obesity. Public Health Nutr. 2007;10(10A):1194-1199.
  31. Stamatakis E, Ekelund U, Ding D, et al. Is the time right for quantitative public health guidelines on sitting? A narrative review of sedentary behaviour research paradigms and findings. Br J Sports Med. 2019;53(6):377-382.
  32. Copeland JL, Ashe MC, Biddle SJ, et al. Sedentary time in older adults: a critical review of measurement, associations with health, and interventions. British Journal of Sports Medicine. 2017;51(21):1539-1539.
  33. Belkic K, Nedic O. Occupational medicine–then and now: where we could go from here. Med Pregl. 2014;67(5-6):139-147.
  34. Levine JA. Sick of sitting. Diabetologia. 2015;58(8):1751-1758.
  35. Mackie P, Weerasekara I, Crowfoot G, et al. What is the effect of interrupting prolonged sitting with frequent bouts of physical activity or standing on first or recurrent stroke risk factors? A scoping review. PLoS One. 2019;14(6):e0217981.
  36. Chaput JP, Tremblay A. Obesity and physical inactivity: the relevance of reconsidering the notion of sedentariness. Obes Facts. 2009;2(4):249-254.
  37. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiological genomics. 2007;28(2):146-157.
  38. Kirk MA, Rhodes RE. Occupation correlates of adults’ participation in leisure-time physical activity: a systematic review. Am J Prev Med. 2011;40(4):476-485.
  39. Tremblay A, Chaput JP. Obesity: the allostatic load of weight loss dieting. Physiol Behav. 2012;106(1):16-21.
  40. Panahi S, Tremblay A. Sedentariness and Health: Is Sedentary Behavior More Than Just Physical Inactivity? Front Public Health. 2018;6:258.
  41. Melanson EL. The effect of exercise on non-exercise physical activity and sedentary behavior in adults. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2017;18 Suppl 1:40-49.
  42. Rey-Lopez JP, Vicente-Rodriguez G, Biosca M, et al. Sedentary behaviour and obesity development in children and adolescents. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2008;18(3):242-251.
  43. Tremblay A, Chaput JP. About unsuspected potential determinants of obesity. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2008;33(4):791-796.
  44. Zagalaz-Sanchez ML, Cachon-Zagalaz J, Sanchez-Zafra M, et al. Mini Review of the Use of the Mobile Phone and Its Repercussion in the Deficit of Physical Activity. Front Psychol. 2019;10:1307.
  45. Dulloo AG, Miles-Chan JL, Schutz Y. Collateral fattening in body composition autoregulation: its determinants and significance for obesity predisposition. Eur J Clin Nutr. 2018;72(5):657-664.
  46. Giroux V, Saidj S, Simon C, et al. Physical activity, energy expenditure and sedentary parameters in overfeeding studies – a systematic review. BMC Public Health. 2018;18(1):903.
  47. Biddle SJH, Bengoechea García E, Pedisic Z, et al. Screen Time, Other Sedentary Behaviours, and Obesity Risk in Adults: A Review of Reviews. Current Obesity Reports. 2017;6(2):134-147.
  48. Dulloo AG. Collateral fattening: When a deficit in lean body mass drives overeating. Obesity (Silver Spring). 2017;25(2):277-279.
  49. Biddle SJH, García Bengoechea E, Wiesner G. Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality. International Journal of Behavioral Nutrition and Physical Activity. 2017;14(1).
  50. Chau JY, Grunseit AC, Chey T, et al. Daily Sitting Time and All-Cause Mortality: A Meta-Analysis. PLoS ONE. 2013;8(11):e80000.
  51. Spruijt-Metz D, O’Reilly GA, Cook L, et al. Behavioral contributions to the pathogenesis of type 2 diabetes. Curr Diab Rep. 2014;14(4):475.
  52. Katzmarzyk PT, Church TS, Craig CL, et al. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998-1005.
  53. Cao C, Liu Y, Zhu W, et al. Effect of Active Workstation on Energy Expenditure and Job Performance: A Systematic Review and Meta-analysis. Journal of physical activity & health. 2016;13(5):562-571.
  54. Fletcher E, Leech R, McNaughton SA, et al. Is the relationship between sedentary behaviour and cardiometabolic health in adolescents independent of dietary intake? A systematic review. Obesity Reviews. 2015;16(9):795-805.
  55. Thyfault JP, Du M, Kraus WE, et al. Physiology of sedentary behavior and its relationship to health outcomes. Med Sci Sports Exerc. 2015;47(6):1301-1305.
  56. Browning MG, Evans RK. The contribution of fat-free mass to resting energy expenditure: implications for weight loss strategies in the treatment of adolescent obesity. Int J Adolesc Med Health. 2015;27(3):241-246.
  57. Churchill SJ, Wang ET, Bhasin G, et al. Basal metabolic rate in women with PCOS compared to eumenorrheic controls. Clin Endocrinol (Oxf). 2015;83(3):384-388.
  58. Devries HA, Gray DE. Aftereffects of Exercise upon Resting Metabolic Rate. Research Quarterly American Association for Health, Physical Education and Recreation. 1963;34(3):314-321.
  59. Seagle HM, Bessesen DH, Hill JO. Effects of Sibutramine on Resting Metabolic Rate and Weight Loss in Overweight Women. Obesity research. 1998;6(2):115-121.
  60. Obarzanek E, Lesem MD, Jimerson DC. Resting metabolic rate of anorexia nervosa patients during weight gain. The American journal of clinical nutrition. 1994;60(5):666-675.
  61. Schebendach J, Golden NH, Jacobson MS, et al. Indirect calorimetry in the nutritional management of eating disorders. Int J Eat Disord. 1995;17(1):59-66.
  62. Jørgensen JOL, Vahl N, Dall R, et al. Resting metabolic rate in healthy adults: Relation to growth hormone status and leptin levels. Metabolism. 1998;47(9):1134-1139.
  63. Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid. 2008;18(2):141-144.
  64. Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33(14):1037-1060.
  65. Bossu C, Galusca B, Normand S, et al. Energy expenditure adjusted for body composition differentiates constitutional thinness from both normal subjects and anorexia nervosa. Am J Physiol Endocrinol Metab. 2007;292(1):E132-137.
  66. Procyshyn RM, Chau A, Tse G. Clozapine’s effects on body weight and resting metabolic rate: a case series. Schizophrenia Research. 2004;66(2-3):159-162.
  67. Froehle AW. Climate variables as predictors of basal metabolic rate: New equations. American Journal of Human Biology. 2008;20(5):510-529.
  68. Henry CJ, Lightowler HJ, Marchini J. Intra-individual variation in resting metabolic rate during the menstrual cycle. Br J Nutr. 2003;89(6):811-817.
  69. Nova E, Varela P, López-Vidriero I, et al. A one-year follow-up study in anorexia nervosa. Dietary pattern and anthropometrical evolution. European Journal of Clinical Nutrition. 2001;55(7):547-554.
  70. Stock MJ. Effects of fasting and refeeding on the metabolic response to a standard meal in man. Eur J Appl Physiol Occup Physiol. 1980;43(1):35-40.
  71. Speakman JR, Selman C. Physical activity and resting metabolic rate. Proc Nutr Soc. 2003;62(3):621-634.
  72. Kosmiski L, Schmiege SJ, Mascolo M, et al. Chronic starvation secondary to anorexia nervosa is associated with an adaptive suppression of resting energy expenditure. J Clin Endocrinol Metab. 2014;99(3):908-914.
  73. Landsberg L, Young JB, Leonard WR, et al. Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance. Metabolism. 2009;58(6):871-876.
  74. Zhang S, Osumi H, Uchizawa A, et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol Rep. 2020;8(2):e14353.
  75. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc. 1984;16(1):29-43.
  76. Konrad KK, Carels RA, Garner DM. Metabolic and psychological changes during refeeding in anorexia nervosa. Eat Weight Disord. 2007;12(1):20-26.
  77. Marra M, Pasanisi F, Montagnese C, et al. BMR variability in women of different weight. Clin Nutr. 2007;26(5):567-572.
  78. Salisbury JJ, Levine AS, Crow SJ, et al. Refeeding, metabolic rate, and weight gain in anorexia nervosa: a review. Int J Eat Disord. 1995;17(4):337-345.
  79. Carroll PV, Christ The Members Of Growth Hormon ER, Bengtsson BÅ, et al. Growth Hormone Deficiency in Adulthood and the Effects of Growth Hormone Replacement: A Review. The Journal of Clinical Endocrinology & Metabolism. 1998;83(2):382-395.
  80. LaForgia J, Withers RT, Gore CJ. Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. J Sports Sci. 2006;24(12):1247-1264.
  81. Fernstrom MH. Drugs That Cause Weight Gain. Obesity research. 1995;3(S4):435S-439S.
  82. Van Wymelbeke V, Brondel L, Marcel Brun J, et al. Factors associated with the increase in resting energy expenditure during refeeding in malnourished anorexia nervosa patients. The American journal of clinical nutrition. 2004;80(6):1469-1477.
  83. Horiuchi M, Handa Y, Fukuoka Y. Impact of ambient temperature on energy cost and economical speed during level walking in healthy young males. Biol Open. 2018;7(7).
  84. Kosmiski L, Schmiege SJ, Mascolo M, et al. Chronic starvation secondary to anorexia nervosa is associated with an adaptive suppression of resting energy expenditure. J Clin Endocrinol Metab. 2013:jc20131694.
  85. Bellisle F. Meals and snacking, diet quality and energy balance. Physiol Behav. 2014;134:38-43.
  86. Binns A, Gray M, Di Brezzo R. Thermic effect of food, exercise, and total energy expenditure in active females. J Sci Med Sport. 2015;18(2):204-208.
  87. Davis JR, Tagliaferro AR, Kertzer R, et al. Variations in dietary-induced thermogenesis and body fatness with aerobic capacity. European Journal of Applied Physiology and Occupational Physiology. 1983;50(3):319-329.
  88. Hutchison AT, Heilbronn LK. Metabolic impacts of altering meal frequency and timing – Does when we eat matter? Biochimie. 2016;124:187-197.
  89. van Baak MA. Meal-induced activation of the sympathetic nervous system and its cardiovascular and thermogenic effects in man. Physiol Behav. 2008;94(2):178-186.
  90. Segal KR, Gutin B, Albu J, et al. Thermic effects of food and exercise in lean and obese men of similar lean body mass. The American journal of physiology. 1987;252(1 Pt 1):E110-117.
  91. Farshchi HR, Taylor MA, Macdonald IA. Decreased thermic effect of food after an irregular compared with a regular meal pattern in healthy lean women. International journal of obesity. 2004;28(5):653-660.
  92. Muller MJ, Bosy-Westphal A. Effect of Over- and Underfeeding on Body Composition and Related Metabolic Functions in Humans. Curr Diab Rep. 2019;19(11):108.
  93. Jacome-Sosa M, Parks EJ, Bruno RS, et al. Postprandial Metabolism of Macronutrients and Cardiometabolic Risk: Recent Developments, Emerging Concepts, and Future Directions. Adv Nutr. 2016;7(2):364-374.
  94. Denzer CM, Young JC. The effect of resistance exercise on the thermic effect of food. Int J Sport Nutr Exerc Metab. 2003;13(3):396-402.
  95. Toyama K, Zhao X, Kuranuki S, et al. The effect of fast eating on the thermic effect of food in young Japanese women. Int J Food Sci Nutr. 2015;66(2):140-147.
  96. de Jonge L, Bray GA. The thermic effect of food and obesity: a critical review. Obesity research. 1997;5(6):622-631.
  97. Li K, Shi W, Zhao F, et al. Changes in Energy Expenditure of Patients with Obesity Following Bariatric Surgery: a Systematic Review of Prospective Studies and Meta-analysis. Obes Surg. 2019;29(7):2318-2337.
  98. Tai MM, Castillo TP, Pi-Sunyer FX. Thermic effect of food during each phase of the menstrual cycle. The American journal of clinical nutrition. 1997;66(5):1110-1115.
  99. Quatela A, Callister R, Patterson A, et al. The Energy Content and Composition of Meals Consumed after an Overnight Fast and Their Effects on Diet Induced Thermogenesis: A Systematic Review, Meta-Analyses and Meta-Regressions. Nutrients. 2016;8(11).
  100. Koletzko B, Toschke AM. Meal patterns and frequencies: do they affect body weight in children and adolescents? Crit Rev Food Sci Nutr. 2010;50(2):100-105.
  101. Gonnissen HK, Hulshof T, Westerterp-Plantenga MS. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2013;14(5):405-416.
  102. Starling RD. Energy expenditure and aging: effects of physical activity. Int J Sport Nutr Exerc Metab. 2001;11 Suppl:S208-217.
  103. Poehlman ET, Horton ES. The impact of food intake and exercise on energy expenditure. Nutrition reviews. 1989;47(5):129-137.
  104. Felig P. Insulin is the mediator of feeding-related thermogenesis: insulin resistance and/or deficiency results in a thermogenic defect which contributes to the pathogenesis of obesity. Clin Physiol. 1984;4(4):267-273.
  105. Stob NR, Bell C, van Baak MA, et al. Thermic effect of food and beta-adrenergic thermogenic responsiveness in habitually exercising and sedentary healthy adult humans. J Appl Physiol (1985). 2007;103(2):616-622.
  106. Himms-Hagen J. Role of thermogenesis in the regulation of energy balance in relation to obesity. Can J Physiol Pharmacol. 1989;67(4):394-401.
  107. Berg C, Forslund HB. The Influence of Portion Size and Timing of Meals on Weight Balance and Obesity. Curr Obes Rep. 2015;4(1):11-18.
  108. Segal KR, Gutin B, Nyman AM, et al. Thermic effect of food at rest, during exercise, and after exercise in lean and obese men of similar body weight. The Journal of clinical investigation. 1985;76(3):1107-1112.
  109. Segal KR, Presta E, Gutin B. Thermic effect of food during graded exercise in normal weight and obese men. The American journal of clinical nutrition. 1984;40(5):995-1000.
  110. Dulloo AG, Jacquet J, Montani JP, et al. Adaptive thermogenesis in human body weight regulation:more of a concept than a measurable entity? Obesity Reviews. 2012;13:105-121.
  111. Nasser J. Taste, food intake and obesity. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2001;2(4):213-218.
  112. Segal KR, Gutin B. Thermic effects of food and exercise in lean and obese women. Metabolism. 1983;32(6):581-589.
  113. Shaw E, Leung GKW, Jong J, et al. The Impact of Time of Day on Energy Expenditure: Implications for Long-Term Energy Balance. Nutrients. 2019;11(10).
  114. Vermorel M, Lazzer S, Bitar A, et al. Contributing factors and variability of energy expenditure in non-obese, obese, and post-obese adolescents. Reprod Nutr Dev. 2005;45(2):129-142.
  115. Morales FEM, Tinsley GM, Gordon PM. Acute and Long-Term Impact of High-Protein Diets on Endocrine and Metabolic Function, Body Composition, and Exercise-Induced Adaptations. J Am Coll Nutr. 2017;36(4):295-305.
  116. Jones PP, Van Pelt RE, Johnson DG, et al. Role of Sympathetic Neural Activation in Age- and Habitual Exercise-Related Differences in the Thermic Effect of Food. The Journal of Clinical Endocrinology & Metabolism. 2004;89(10):5138-5144.
  117. Miller DS, Mumford P, Stock MJ. Gluttony. The American journal of clinical nutrition. 1967;20(11):1223-1229.
  118. Zahorska-Markiewicz B. Thermic effect of food and exercise in obesity. Eur J Appl Physiol Occup Physiol. 1980;44(3):231-235.
  119. Tappy L. Thermic effect of food and sympathetic nervous system activity in humans. Reprod Nutr Dev. 1996;36(4):391-397.
  120. Bellisle F, McDevitt R, Prentice AM. Meal frequency and energy balance. Br J Nutr. 1997;77 Suppl 1:S57-70.
  121. McDonald RB, Wickler S, Horwitz B, et al. Meal-induced thermogenesis following exercise training in the rat. Med Sci Sports Exerc. 1988;20(1):44-49.
  122. Hibi M, Oishi S, Matsushita M, et al. Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. International journal of obesity. 2016;40(11):1655-1661.
  123. Poehlman ET. Regulation of energy expenditure in aging humans. Journal of the American Geriatrics Society. 1993;41(5):552-559.
  124. Higgins JA. Resistant starch and energy balance: impact on weight loss and maintenance. Crit Rev Food Sci Nutr. 2014;54(9):1158-1166.
  125. Tagliaferro AR, Kertzer R, Davis JR, et al. Effects of exercise-training on the thermic effect of food and body fatness of adult women. Physiology & Behavior. 1986;38(5):703-710.
  126. Ravn AM, Gregersen NT, Christensen R, et al. Thermic effect of a meal and appetite in adults: an individual participant data meta-analysis of meal-test trials. Food Nutr Res. 2013;57.
  127. Sazonov ES, Schuckers S. The energetics of obesity: a review: monitoring energy intake and energy expenditure in humans. IEEE Eng Med Biol Mag. 2010;29(1):31-35.
  128. Adams CE, Greenway FL, Brantley PJ. Lifestyle factors and ghrelin: critical review and implications for weight loss maintenance. Obesity Reviews. 2011;12(5):e211-e218.
  129. Martins C, Kulseng B, King NA, et al. The Effects of Exercise-Induced Weight Loss on Appetite-Related Peptides and Motivation to Eat. The Journal of Clinical Endocrinology & Metabolism. 2010;95(4):1609-1616.
  130. Hill JO, Melanson EL. Overview of the determinants of overweight and obesity: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S515-521.
  131. Lenard NR, Berthoud HR. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring). 2008;16 Suppl 3:S11-22.
  132. Drenowatz C. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance. Adv Nutr. 2015;6(5):592-599.
  133. Kotz CM. Integration of feeding and spontaneous physical activity: role for orexin. Physiol Behav. 2006;88(3):294-301.
  134. Beaulieu K, Hopkins M, Blundell J, et al. Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiol Behav. 2018;192:23-29.
  135. Blundell JE, Gibbons C, Caudwell P, et al. Appetite control and energy balance: impact of exercise. Obesity Reviews. 2015;16:67-76.
  136. Heitmann BL, Westerterp KR, Loos RJ, et al. Obesity: lessons from evolution and the environment. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2012;13(10):910-922.
  137. Bessesen DH. Regulation of body weight: what is the regulated parameter? Physiol Behav. 2011;104(4):599-607.
  138. Martins C, Morgan L, Truby H. A review of the effects of exercise on appetite regulation: an obesity perspective. International journal of obesity (2005). 2008;32(9):1337-1347.
  139. King NA, Tremblay A, Blundell JE. Effects of exercise on appetite control: implications for energy balance. Med Sci Sports Exerc. 1997;29(8):1076-1089.
  140. Li J, O’Connor LE, Zhou J, et al. Exercise patterns, ingestive behaviors, and energy balance. Physiol Behav. 2014;134:70-75.
  141. Melzer K, Kayser B, Saris WH, et al. Effects of physical activity on food intake. Clin Nutr. 2005;24(6):885-895.
  142. Livingstone MB. Energy expenditure and physical activity in relation to fitness in children. Proc Nutr Soc. 1994;53(1):207-221.
  143. Loprinzi PD, Cardinal BJ, Loprinzi KL, et al. Benefits and environmental determinants of physical activity in children and adolescents. Obes Facts. 2012;5(4):597-610.
  144. Song Z, Xiaoli AM, Yang F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients. 2018;10(10).
  145. Burdakov D. Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology. 2019;154:61-67.
  146. O’Donoghue G, Kennedy A, Puggina A, et al. Socio-economic determinants of physical activity across the life course: A “DEterminants of DIet and Physical ACtivity” (DEDIPAC) umbrella literature review. PLoS One. 2018;13(1):e0190737.
  147. Riggs DW, Yeager RA, Bhatnagar A. Defining the Human Envirome: An Omics Approach for Assessing the Environmental Risk of Cardiovascular Disease. Circ Res. 2018;122(9):1259-1275.
  148. Novak CM, Escande C, Burghardt PR, et al. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity. Horm Behav. 2010;58(3):355-367.
  149. Koepp GA, Manohar CU, McCrady-Spitzer SK, et al. Treadmill desks: A 1-year prospective trial. Obesity (Silver Spring). 2013;21(4):705-711.
  150. Finlayson G, Dalton M. Hedonics of Food Consumption: Are Food ‘Liking’ and ‘Wanting’ Viable Targets for Appetite Control in the Obese? Current Obesity Reports. 2012;1(1):42-49.
  151. Plasqui G, Westerterp KR. Seasonal Variation in Total Energy Expenditure and Physical Activity in Dutch Young Adults. Obesity research. 2004;12(4):688-694.
  152. Gomersall SR, Rowlands AV, English C, et al. The ActivityStat Hypothesis. Sports Medicine. 2013;43(2):135-149.
  153. Lanningham-Foster L, Nysse LJ, Levine JA. Labor saved, calories lost: the energetic impact of domestic labor-saving devices. Obesity research. 2003;11(10):1178-1181.
  154. Novak CM, Zhang M, Levine JA. Neuromedin U in the paraventricular and arcuate hypothalamic nuclei increases non-exercise activity thermogenesis. J Neuroendocrinol. 2006;18(8):594-601.
  155. Houston AI, McNamara JM. Foraging currencies, metabolism and behavioural routines. J Anim Ecol. 2014;83(1):30-40.
  156. Xu Z, Fu T, Guo Q, et al. Mitochondrial quality orchestrates muscle-adipose dialog to alleviate dietary obesity. Pharmacol Res. 2019;141:176-180.
  157. Pegington M, French DP, Harvie MN. Why young women gain weight: A narrative review of influencing factors and possible solutions. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2020.
  158. McCrady-Spitzer SK, Levine JA. Nonexercise activity thermogenesis: a way forward to treat the worldwide obesity epidemic. Surg Obes Relat Dis. 2012;8(5):501-506.
  159. Schwartz MW, Woods SC, Seeley RJ, et al. Is the Energy Homeostasis System Inherently Biased Toward Weight Gain? Diabetes. 2003;52(2):232-238.
  160. Barker LF. The Obesities-Their Origins and Some of the Methods of Reducing Them. Cal West Med. 1932;37(2):73-81.
  161. Chapelot D. The Role of Snacking in Energy Balance: a Biobehavioral Approach. The Journal of Nutrition. 2011;141(1):158-162.
  162. Garland T, Jr., Schutz H, Chappell MA, et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. The Journal of experimental biology. 2011;214(Pt 2):206-229.
  163. Thorburn AW, Proietto J. Biological determinants of spontaneous physical activity. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2000;1(2):87-94.
  164. Brownson RC, Boehmer TK, Luke DA. DECLINING RATES OF PHYSICAL ACTIVITY IN THE UNITED STATES: What Are the Contributors? Annual Review of Public Health. 2005;26(1):421-443.
  165. Keesey RE, Hirvonen MD. Body Weight Set-Points: Determination and Adjustment. The Journal of Nutrition. 1997;127(9):1875S-1883S.
  166. Novak CM, Levine JA. Central neural and endocrine mechanisms of non-exercise activity thermogenesis and their potential impact on obesity. J Neuroendocrinol. 2007;19(12):923-940.
  167. Levine JA, Vander Weg MW, Hill JO, et al. Non-exercise activity thermogenesis: the crouching tiger hidden dragon of societal weight gain. Arterioscler Thromb Vasc Biol. 2006;26(4):729-736.
  168. Ding C, Lim LL, Xu L, et al. Sleep and Obesity. J Obes Metab Syndr. 2018;27(1):4-24.
  169. Dutton GR, Kim Y, Jacobs DR, et al. 25-year weight gain in a racially balanced sample of U.S. adults: The CARDIA study. Obesity. 2016;24(9):1962-1968.
  170. Belfort-DeAguiar R, Seo D. Food Cues and Obesity: Overpowering Hormones and Energy Balance Regulation. Curr Obes Rep. 2018;7(2):122-129.
  171. Porter RM, Tindall A, Gaffka BJ, et al. A Review of Modifiable Risk Factors for Severe Obesity in Children Ages 5 and Under. Child Obes. 2018;14(7):468-476.
  172. Lightfoot JT, EJC DEG, Booth FW, et al. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC. Med Sci Sports Exerc. 2018;50(4):863-873.
  173. Almiron-Roig E, Palla L, Guest K, et al. Factors that determine energy compensation: a systematic review of preload studies. Nutrition reviews. 2013;71(7):458-473.
  174. Hopkins M, Blundell JE. Energy Metabolism and Appetite Control: Separate Roles for Fat-Free Mass and Fat Mass in the Control of Food Intake in Humans. In nd, Harris RBS, (Eds). Appetite and Food Intake: Central Control. Boca Raton (FL) 2017:259-276.
  175. Cortis C, Puggina A, Pesce C, et al. Psychological determinants of physical activity across the life course: A “DEterminants of DIet and Physical ACtivity” (DEDIPAC) umbrella systematic literature review. PLOS ONE. 2017;12(8):e0182709.
  176. Viggiano D. The hyperactive syndrome: Metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behavioural brain research. 2008;194(1):1-14.
  177. Dodd CJ. Energy regulation in young people. J Sports Sci Med. 2007;6(3):327-336.
  178. Villablanca PA, Alegria JR, Mookadam F, et al. Nonexercise activity thermogenesis in obesity management. Mayo Clinic proceedings. 2015;90(4):509-519.
  179. Pontzer H, Durazo-Arvizu R, Lara, et al. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans. Current Biology. 2016;26(3):410-417.
  180. Saris WHM, Blair SN, Van Baak MA, et al. How much physical activity is enough to prevent unhealthy weight gain? Outcome of the IASO 1st Stock Conference and consensus statement. Obesity Reviews. 2003;4(2):101-114.
  181. Wendel-Vos W, Droomers M, Kremers S, et al. Potential environmental determinants of physical activity in adults: a systematic review. Obesity Reviews. 2007;8(5):425-440.
  182. Berthoud HR. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obesity (Silver Spring). 2006;14 Suppl 5:197S-200S.
  183. Swift DL, McGee JE, Earnest CP, et al. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Progress in Cardiovascular Diseases. 2018;61(2):206-213.
  184. Ball K, Carver A, Downing K, et al. Addressing the social determinants of inequities in physical activity and sedentary behaviours. Health Promot Int. 2015;30 Suppl 2:ii18-19.
  185. Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care. 2004;7(6):599-605.
  186. Hunter GR, Larson-Meyer DE, Sirikul B, et al. Muscle metabolic function and free-living physical activity. 2006;101(5):1356-1361.
  187. Bergeron P, Reyburn S. L’impact de l’environnement bâti sur l’activité physique, l’alimentation et le poids. In Québec IdlSPd, (Ed) 2010.
  188. Jaeschke L, Steinbrecher A, Luzak A, et al. Socio-cultural determinants of physical activity across the life course: a ‘Determinants of Diet and Physical Activity’ (DEDIPAC) umbrella systematic literature review. Int J Behav Nutr Phys Act. 2017;14(1):173.
  189. Nixon JP, Kotz CM, Novak CM, et al. Neuropeptides controlling energy balance: orexins and neuromedins. Handb Exp Pharmacol. 2012(209):77-109.
  190. Pontzer H. Constrained Total Energy Expenditure and the Evolutionary Biology of Energy Balance. Exercise and sport sciences reviews. 2015;43(3):110-116.
  191. Caudwell P, Finlayson G, Gibbons C, et al. Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. The American journal of clinical nutrition. 2013;97(1):7-14.
  192. King JA, Wasse LK, Stensel DJ, et al. Exercise and ghrelin. A narrative overview of research. Appetite. 2013;68:83-91.
  193. Vasileva LV, Marchev AS, Georgiev MI. Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018;121:173-193.
  194. Pivarnik JM, Reeves MJ, Rafferty AP. Seasonal Variation in Adult Leisure-Time Physical Activity. Medicine & Science in Sports & Exercise. 2003;35(6):1004-1008.
  195. Plucker A, Thomas DM, Broskey N, et al. Adult energy requirements predicted from doubly labeled water. International journal of obesity (2005). 2018;42(8):1515-1523.
  196. Westerterp KR. Physical activity, food intake, and body weight regulation: insights from doubly labeled water studies. Nutrition reviews. 2010;68(3):148-154.
  197. Pinto BM, Lynn H, Marcus BH, et al. Physician-based activity counseling: Intervention effects on mediators of motivational readiness for physical activity. Annals of Behavioral Medicine. 2001;23(1):2-10.
  198. Koepp GA, Moore G, Levine JA. An Under-the-Table Leg-Movement Apparatus and Changes in Energy Expenditure. Front Physiol. 2017;8:318.
  199. Rawal LB, Smith BJ, Quach H, et al. Physical Activity among Adults with Low Socioeconomic Status Living in Industrialized Countries: A Meta-Ethnographic Approach to Understanding Socioecological Complexities. J Environ Public Health. 2020;2020:4283027.
  200. Schubert MM, Sabapathy S, Leveritt M, et al. Acute Exercise and Hormones Related to Appetite Regulation: A Meta-Analysis. Sports Medicine. 2014;44(3):387-403.
  201. Galgani J, Ravussin E. Energy metabolism, fuel selection and body weight regulation. International journal of obesity (2005). 2008;32 Suppl 7:S109-119.
  202. Rowland TW. The biological basis of physical activity. Med Sci Sports Exerc. 1998;30(3):392-399.
  203. Hebert SL, Marquet-de Rouge P, Lanza IR, et al. Mitochondrial Aging and Physical Decline: Insights From Three Generations of Women. J Gerontol A Biol Sci Med Sci. 2015;70(11):1409-1417.
  204. Levine JA. Nonexercise activity thermogenesis–liberating the life-force. J Intern Med. 2007;262(3):273-287.
  205. LaMonte MJ, Blair SN. Physical activity, cardiorespiratory fitness, and adiposity: contributions to disease risk. Curr Opin Clin Nutr Metab Care. 2006;9(5):540-546.
  206. Amireault S, Godin G, Vézina-Im L-A. Determinants of physical activity maintenance: a systematic review and meta-analyses. Health Psychology Review. 2013;7(1):55-91.
  207. Ombrellaro KJ, Perumal N, Zeiher J, et al. Socioeconomic Correlates and Determinants of Cardiorespiratory Fitness in the General Adult Population: a Systematic Review and Meta-Analysis. Sports Med Open. 2018;4(1):25.
  208. Giridharan NV. Glucose & energy homeostasis: Lessons from animal studies. Indian J Med Res. 2018;148(5):659-669.
  209. Klein S, Goran M. Energy metabolism inresponse to overfeeding in young adult men. Metabolism. 1993;42(9):1201-1205.
  210. Harris AM, Lanningham-Foster LM, McCrady SK, et al. Nonexercise movement in elderly compared with young people. Am J Physiol Endocrinol Metab. 2007;292(4):E1207-1212.
  211. Levine JA, McCrady SK, Boyne S, et al. Non-exercise physical activity in agricultural and urban people. Urban Stud. 2011;48(11):2417-2427.
  212. Lewis BA, Marcus BH, Pate RR, et al. Psychosocial mediators of physical activity behavior among adults and children. American Journal of Preventive Medicine. 2002;23(2):26-35.
  213. Urlacher SS, Snodgrass JJ, Dugas LR, et al. Constraint and trade-offs regulate energy expenditure during childhood. Sci Adv. 2019;5(12):eaax1065.
  214. Thomas D, Das SK, Levine JA, et al. New fat free mass – fat mass model for use in physiological energy balance equations. Nutrition & metabolism. 2010;7:39.
  215. Chow LS, Greenlund LJ, Asmann YW, et al. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol (1985). 2007;102(3):1078-1089.
  216. Tou JC, Wade CE. Determinants affecting physical activity levels in animal models. Exp Biol Med (Maywood). 2002;227(8):587-600.
  217. Bergman F, Wahlstrom V, Stomby A, et al. Treadmill workstations in office workers who are overweight or obese: a randomised controlled trial. Lancet Public Health. 2018;3(11):e523-e535.
  218. Dulloo AG, Miles-Chan JL, Montani JP, et al. Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2017;18 Suppl 1:56-64.
  219. Novak CM, Zhang M, Levine JA. Sensitivity of the hypothalamic paraventricular nucleus to the locomotor-activating effects of neuromedin U in obesity. Brain Res. 2007;1169:57-68.
  220. Clayton DJ, James LJ. The effect of breakfast on appetite regulation, energy balance and exercise performance. Proc Nutr Soc. 2016;75(3):319-327.
  221. Pontzer H. Energy Constraint as a Novel Mechanism Linking Exercise and Health. Physiology (Bethesda, Md. 2018;33(6):384-393.
  222. Cook CM, Schoeller DA. Physical activity and weight control: conflicting findings. Curr Opin Clin Nutr Metab Care. 2011;14(5):419-424.
  223. Liguori G, Schuna JM, Jr., Tucker J, et al. Impact of Prescribed Exercise on Physical Activity Compensation in Young Adults. J Strength Cond Res. 2017;31(2):503-508.
  224. Levine JA. Is future fat fated? Obesity (Silver Spring). 2017;25(6):985-986.
  225. Henriksen A, Haugen Mikalsen M, Woldaregay AZ, et al. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. Journal of Medical Internet Research. 2018;20(3):e110.
  226. Novak CM, Escande C, Gerber SM, et al. Endurance capacity, not body size, determines physical activity levels: role of skeletal muscle PEPCK. PLoS One. 2009;4(6):e5869.
  227. Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab. 2006;290(2):E396-403.
  228. Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism. 2019;92:11-25.
  229. Rhodes RE, Quinlan A. Predictors of physical activity change among adults using observational designs. Sports Med. 2015;45(3):423-441.
  230. Hunter GR, Weinsier RL, Zuckerman PA, et al. Aerobic fitness, physiologic difficulty and physical activity in Black and White women. International journal of obesity. 2004;28(9):1111-1117.
  231. Cannon WB. ORGANIZATION FOR PHYSIOLOGICAL HOMEOSTASIS. Physiological Reviews. 1929;9(3):399-431.
  232. Sauvant D. La modélisation systémique en nutrition. Reprod Nutr Dev. 1992;32(3):217-230.
  233. Piaggi P, Vinales KL, Basolo A, et al. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. J Endocrinol Invest. 2018;41(1):83-89.
  234. Kotz CM, Wang C, Teske JA, et al. Orexin A mediation of time spent moving in rats: neural mechanisms. Neuroscience. 2006;142(1):29-36.
  235. Wang H, Ye J. Regulation of energy balance by inflammation: common theme in physiology and pathology. Rev Endocr Metab Disord. 2015;16(1):47-54.
  236. Fujikawa T, Castorena CM, Lee S, et al. The hypothalamic regulation of metabolic adaptations to exercise. J Neuroendocrinol. 2017;29(10).
  237. Lakerveld J, Mackenbach J. The Upstream Determinants of Adult Obesity. Obes Facts. 2017;10(3):216-222.
  238. Anderson ES, Wojcik JR, Winett RA, et al. Social-cognitive determinants of physical activity: the influence of social support, self-efficacy, outcome expectations, and self-regulation among participants in a church-based health promotion study. Health psychology : official journal of the Division of Health Psychology, American Psychological Association. 2006;25(4):510-520.
  239. Levine JA, Kotz CM. NEAT–non-exercise activity thermogenesis–egocentric & geocentric environmental factors vs. biological regulation. Acta Physiol Scand. 2005;184(4):309-318.
  240. Khosla T, Billewicz WZ. Measurement of change in body-weight. 1964;18(01):227.
  241. Myers A, Gibbons C, Finlayson G, et al. Associations among sedentary and active behaviours, body fat and appetite dysregulation: investigating the myth of physical inactivity and obesity. British Journal of Sports Medicine. 2017;51(21):1540-1544.
  242. Schlögl M, Piaggi P, Pannacciuli N, et al. Energy Expenditure Responses to Fasting and Overfeeding Identify Phenotypes Associated With Weight Change. Diabetes. 2015;64(11):3680-3689.
  243. Ford ES, Merritt RK, Heath GW, et al. Physical Activity Behaviors in Lower and Higher Socioeconomic Status Populations. American Journal of Epidemiology. 1991;133(12):1246-1256.
  244. von Loeffelholz C, Birkenfeld A. The Role of Non-exercise Activity Thermogenesis in Human Obesity. In Feingold KR, Anawalt B, Boyce A, et al., (Eds). Endotext. South Dartmouth (MA) 2000.
  245. Katzmarzyk PT, Mason C. The Physical Activity Transition. Journal of Physical Activity and Health. 2009;6(3):269-280.
  246. Katzmarzyk PT, Craig CL, Bouchard C. Original article underweight, overweight and obesity: relationships with mortality in the 13-year follow-up of the Canada Fitness Survey. J Clin Epidemiol. 2001;54(9):916-920.
  247. Speakman JR, Levitsky DA, Allison DB, et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Disease models & mechanisms. 2011;4(6):733-745.
  248. Mitre N, Foster RC, Lanningham-Foster L, et al. The energy expenditure of an activity-promoting video game compared to sedentary video games and TV watching. J Pediatr Endocrinol Metab. 2011;24(9-10):689-695.
  249. Gomersall SR, Maher C, English C, et al. Testing the activitystat hypothesis: a randomised controlled trial. BMC Public Health. 2016;16:900.
  250. Brondel L, Romer M, Van Wymelbeke V, et al. Variety enhances food intake in humans: Role of sensory-specific satiety. Physiology & Behavior. 2009;97(1):44-51.
  251. Speakman JR. Body size, energy metabolism and lifespan. The Journal of experimental biology. 2005;208(Pt 9):1717-1730.
  252. Wareham NJ, Van Sluijs EMF, Ekelund U. Physical activity and obesity prevention: a review of the current evidence. Proceedings of the Nutrition Society. 2005;64(2):229-247.
  253. Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258-271.
  254. Levine JA. Role of Nonexercise Activity Thermogenesis in Resistance to Fat Gain in Humans. Science. 1999;283(5399):212-214.
  255. Perusse L, Tremblay A, Leblanc C, et al. Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol. 1989;129(5):1012-1022.
  256. Shahnazaryan U, Wojcik M, Bednarczuk T, et al. Role of Obesogens in the Pathogenesis of Obesity. Medicina. 2019;55(9).
  257. Kiwaki K, Kotz CM, Wang C, et al. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab. 2004;286(4):E551-559.
  258. Porter J, Nguo K, Collins J, et al. Total energy expenditure measured using doubly labeled water compared with estimated energy requirements in older adults (≥65 y): analysis of primary data. The American journal of clinical nutrition. 2019;110(6):1353-1361.
  259. Corder K, Winpenny EM, Foubister C, et al. Becoming a parent: A systematic review and meta-analysis of changes in BMI, diet, and physical activity. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2020;21(4):e12959.
  260. Joosen AM, Gielen M, Vlietinck R, et al. Genetic analysis of physical activity in twins. The American journal of clinical nutrition. 2005;82(6):1253-1259.
  261. Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. The American journal of clinical nutrition. 2000;72(6):1451-1454.
  262. Kumahara H, Ohta C, Nabeshima E, et al. Dietary Intake and Energy Expenditure During Two Different Phases of Athletic Training in Female Collegiate Lacrosse Players. J Strength Cond Res. 2019.
  263. de Geus EJ, Bartels M, Kaprio J, et al. Genetics of regular exercise and sedentary behaviors. Twin Res Hum Genet. 2014;17(4):262-271.
  264. Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2012;13(3):234-257.
  265. Donnelly JE, Smith BK. Is exercise effective for weight loss with ad libitum diet? Energy balance, compensation, and gender differences. Exercise and sport sciences reviews. 2005;33(4):169-174.
  266. Westerterp KR. Impacts of vigorous and non-vigorous activity on daily energy expenditure. Proceedings of the Nutrition Society. 2003;62(3):645-650.

Avis

Il n’y a pas encore d’avis.

Soyez le premier à laisser votre avis sur “Bioénergétique I: Perdre du poids sainement”

Vous aimerez peut-être aussi…